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Overview

● Streaming systems overview
● Process-calculi concurrency languages
● Proposed abstractions for declarative concurrency



Streaming systems overview
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Infinite stream of input events 
(e.g. tweets, clicks, views….)

Transformation 
function

Infinite stream of output events 
(e.g. classified tweets, viewing times, billing)

Limited 
external 
memory

Streaming system



I spent some years working on 
non-monotonic reasoning



I moved to ETH Zurich and started
investigating streaming systems



Streaming system problem:

How to reason over 
incomplete and infinite data?



then I started building a streaming system



● SignalGraph is a streaming graph platform with 10+ billion events/day.

● Vertices are wifi and BLE signals. 

● Events denote temporal edges (observations of proximal signals).

● Events are clustered into graph embeddings for similarity analysis.



Input stream 
(e.g. Kafka)

Output stream
(e.g. S3 files)

Dealer

SignalGraph’s Streaming System

Dealer

Player

Player

Player

e1

e2

e1

T(e1...e10)

Players implement event transformations.
Dealers distribute events to players.



Dealer

Development Requirements

Player

Transform(in stream): out stream {

Map(e:in, hash(e)) -> out

}

Transport(in stream, client gRPC){

Map(e:in, resolve(e)) -> client

}

KafkaSrc -> Transform -> Transport

Transform(in stream): out stream {

Map(e:in, count(e)) 

 -> Reduce(emit(24h,hll_agg))

    -> out

}

Transport(in stream, client s3){

Map(e:in, new_file(e)) -> client 

}

Dealer -> Transform -> Transport



SignalGraph’s Streaming Composition



● Each process (dealer/player) must be highly concurrent
○ handle streams of 10bil events/day

● Processes fail regularly with a known distribution
○ OOM, Network partitions

● Running on Kubernetes
○ CPU and Network starvation at times

Operating Environment



● Concurrency controls 
● Prioritized execution
● (Lossy) backpressure control 
● Cancellations and restarts of transformations

Operating Requirements



(Revised) Streaming systems problem:

How to structure a system that reasons over 
incomplete and infinite data?



Process-calculi concurrent programming
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Processes, channels, messages

● Go language
○ Popular and growing (Kubernetes, Cockroach)

● Rust language
○ Growing fast (Servo, Firecracker)
○ Library support for CSP primitives

Modern process-calculi based languages



Are such primitives good abstractions for building
highly-concurrent streaming systems?



Go’s concurrency

chs := make([]chan string, 10, 10)

for i:=1; i<10; i++{

chs[i] = make(chan string,10)

go func(i int) {

for str := range chs[i]{

count(str)

}

}(i)

}

go func(input chan string) {

for e := range input {

i := hash(e)

chs[i] <- e

}

}(input)

Producer Consumers



Possible traces for the previous example

● count("e1"), count("e2"), count("e3"), count…

● deadlock (count blocks internally)

Channels are of fixed-size and blocking.



Go’s concurrency… gets tricky

chs := make([]chan string, 10, 10)

for i:=1; i<10; i++{

chs[i] = make(chan string,10)

go func(i int) {

for str := range chs[i]{

count(str)

}

}(i)

}

go func(input chan string) {

for e := range input {

go func(e string){

i := hash(e)

chs[i] <- e

}(e)

 

}

}(input)

Producer Consumers



Possible traces for the previous example

● count("e1"), count("e2"), count("e3"), count…

● low-throughput (CPU starvation)

Goroutines are cheap, but we cannot spawn infinitely many.



Cancelling go routines

import "context" 

ctx, cancel := context.WithTimeout(ctx, 100*time.Millisecond) 

go func(ctx context.Context) 

for {

select{

case <-ctx.Done():

case str := <- ch:

f_a(str)

}}

}(ctx)



Cancelling go routines… gets tricky

 go func(ctx context.Context) 

for {

select{

case <-ctx.Done():

default:

}

select{

case <-ctx.Done():

case str := <- ch:

f_a(str)

}

}

}(ctx)



● Channel transformations

● Non-blocking cancellations
● Restarts after panics
● Bounded concurrency
● Prioritizing executions

No language-level support for

*Note: This is not a criticism of process-calculi languages.



Process-calculi primitives are not the right 
abstractions for concurrent transformations.



Declarative concurrent programming
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Say what the computation is,
not how to manage it.

Generic Declarative Programming



(WIP) Declarative Concurrent Programming Abstractions

Streams, Queues

Stream MapReduce,
Futures

Job Runners, GoSafe

Declarative Layer

Management Layer

Data Structure Layer



GoSafe (High-level)

func GoSafeWithAutoRestart(fn func(), onFail func(), ctx context.Context) {

  SafeGo(fn).

    OnFail(onFail).

    WithAutoRestart(structs.DefaultExponentialBackoff()).

    WithContext(ctx).

    Go()

}



GoSafe (High-level)

func (g *goSafe) Go() {

rootCatcher := exceptions.Catch(

rootHandler(g.failure(), g.logger, g.apm, g.name()))

go func() {

if g.stop() {

return

}

    g.fn()

  }()

}



Job Runner (High-level)

func (b *JobRunner) run(job Job, ctx context.Context) {

  ...

    running := atomic.LoadInt32(&b.running)

    nWorkers := atomic.LoadInt32(&b.nWorkers)

    canRun = running < nWorkers

    if !canRun {

      b.queue.Push(&jobWithContext{job: job,ctx: ctx,})

      return

    }

    if atomic.CompareAndSwapInt32(&b.running, running, running+1) {

      SafeGo(func() {

   defer b.checkAndDrain()

        job.Execute(ctx)

      }).Go()

...



Stream (High-level)

func NewStream(c context.Context) *Stream {

   ...

   stream := &Stream{

     nonBlockQ: NewQueue(cc),

     ctx:      ctx,

     cancel:   cancel,

     ccancel:  ccancel,

     done:     int32(0),

     timeout:  DefaultStreamTimeout,

   }

   stream.cond = NewConditionVar(cc, r, stream)

   return stream

 }



Stream (High-level)

func (s *Stream) Produce(element interface{}) (ret bool) {

   select {

   case <-s.ctx.Done():

     return false

   default:

   }

   select {

   case <-s.ctx.Done():

     return false

   default: 

s.nonBlockQ.Send(element)

     s.cond.Signal()

     return true

   }

 }



Stream (High-level)

func (s *Stream) Consume() (interface{}, bool) {

  for {

    element, ok := s.nonBlockQ.Recv()

    if !ok {

      select {

      case <-s.ctx.Done(): return nil, false

      default:

      }

      s.wait(func() bool {

        !s.Done()

      })

      continue

    }

    return element, true

  }}



Streaming MapReduce (High-level)

 stream := patterns.NewStream(ctx)

 defer stream.Cancel()

 

 patterns.InBackground(ctx, func(ctx context.Context) {

     for i, _ := range clusters[:len(clusters)-1] {

       for k, _ := range clusters[i+1:] {

         j := i + 1 + k

         if !stream.Produce([]int{i, j}) {

           break

         }

       }

     }

     stream.End()

  })



Streaming MapReduce (High-level)

 patterns.MapReduce(stream,

     func(ctx context.Context, i interface{}) interface{} {

       hc1 := clusters[i[0]]; hc2 := clusters[i[1]]

       if hc1.SimilarityWithFrequencyScore(hc2) >= setSimilarity {

         return i

       }

       return nil

     },

     func(results interface{}, result interface{}) interface{} {

       graph.AddEdge(result[0], result[1])

       return nil

     }

   )



Summary:

1. Streaming systems are difficult to build.
2. Highly concurrent processes are typically needed.
3. Standard CSP/Pi-calculus primitives are too low-level.
4. In our case, declarative primitives yield more stable systems.

Extending the primitives has paid off,
but we are still making mistakes and learning.
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