
Declarative Concurrent Programming
in Streaming Systems

June, 2019

Srdjan Marinovic

Overview

● Streaming systems overview
● Process-calculi concurrency languages
● Proposed abstractions for declarative concurrency

Streaming systems overview

1

Infinite stream of input events
(e.g. tweets, clicks, views….)

Transformation
function

Infinite stream of output events
(e.g. classified tweets, viewing times, billing)

Limited
external
memory

Streaming system

I spent some years working on
non-monotonic reasoning

I moved to ETH Zurich and started
investigating streaming systems

Streaming system problem:

How to reason over
incomplete and infinite data?

then I started building a streaming system

● SignalGraph is a streaming graph platform with 10+ billion events/day.

● Vertices are wifi and BLE signals.

● Events denote temporal edges (observations of proximal signals).

● Events are clustered into graph embeddings for similarity analysis.

Input stream
(e.g. Kafka)

Output stream
(e.g. S3 files)

Dealer

SignalGraph’s Streaming System

Dealer

Player

Player

Player

e1

e2

e1

T(e1...e10)

Players implement event transformations.
Dealers distribute events to players.

Dealer

Development Requirements

Player

Transform(in stream): out stream {

Map(e:in, hash(e)) -> out

}

Transport(in stream, client gRPC){

Map(e:in, resolve(e)) -> client

}

KafkaSrc -> Transform -> Transport

Transform(in stream): out stream {

Map(e:in, count(e))

 -> Reduce(emit(24h,hll_agg))

 -> out

}

Transport(in stream, client s3){

Map(e:in, new_file(e)) -> client

}

Dealer -> Transform -> Transport

SignalGraph’s Streaming Composition

● Each process (dealer/player) must be highly concurrent
○ handle streams of 10bil events/day

● Processes fail regularly with a known distribution
○ OOM, Network partitions

● Running on Kubernetes
○ CPU and Network starvation at times

Operating Environment

● Concurrency controls
● Prioritized execution
● (Lossy) backpressure control
● Cancellations and restarts of transformations

Operating Requirements

(Revised) Streaming systems problem:

How to structure a system that reasons over
incomplete and infinite data?

Process-calculi concurrent programming

2

Processes, channels, messages

● Go language
○ Popular and growing (Kubernetes, Cockroach)

● Rust language
○ Growing fast (Servo, Firecracker)
○ Library support for CSP primitives

Modern process-calculi based languages

Are such primitives good abstractions for building
highly-concurrent streaming systems?

Go’s concurrency

chs := make([]chan string, 10, 10)

for i:=1; i<10; i++{

chs[i] = make(chan string,10)

go func(i int) {

for str := range chs[i]{

count(str)

}

}(i)

}

go func(input chan string) {

for e := range input {

i := hash(e)

chs[i] <- e

}

}(input)

Producer Consumers

Possible traces for the previous example

● count("e1"), count("e2"), count("e3"), count…

● deadlock (count blocks internally)

Channels are of fixed-size and blocking.

Go’s concurrency… gets tricky

chs := make([]chan string, 10, 10)

for i:=1; i<10; i++{

chs[i] = make(chan string,10)

go func(i int) {

for str := range chs[i]{

count(str)

}

}(i)

}

go func(input chan string) {

for e := range input {

go func(e string){

i := hash(e)

chs[i] <- e

}(e)

}

}(input)

Producer Consumers

Possible traces for the previous example

● count("e1"), count("e2"), count("e3"), count…

● low-throughput (CPU starvation)

Goroutines are cheap, but we cannot spawn infinitely many.

Cancelling go routines

import "context"

ctx, cancel := context.WithTimeout(ctx, 100*time.Millisecond)

go func(ctx context.Context)

for {

select{

case <-ctx.Done():

case str := <- ch:

f_a(str)

}}

}(ctx)

Cancelling go routines… gets tricky

 go func(ctx context.Context)

for {

select{

case <-ctx.Done():

default:

}

select{

case <-ctx.Done():

case str := <- ch:

f_a(str)

}

}

}(ctx)

● Channel transformations

● Non-blocking cancellations
● Restarts after panics
● Bounded concurrency
● Prioritizing executions

No language-level support for

*Note: This is not a criticism of process-calculi languages.

Process-calculi primitives are not the right
abstractions for concurrent transformations.

Declarative concurrent programming

3

Say what the computation is,
not how to manage it.

Generic Declarative Programming

(WIP) Declarative Concurrent Programming Abstractions

Streams, Queues

Stream MapReduce,
Futures

Job Runners, GoSafe

Declarative Layer

Management Layer

Data Structure Layer

GoSafe (High-level)

func GoSafeWithAutoRestart(fn func(), onFail func(), ctx context.Context) {

 SafeGo(fn).

 OnFail(onFail).

 WithAutoRestart(structs.DefaultExponentialBackoff()).

 WithContext(ctx).

 Go()

}

GoSafe (High-level)

func (g *goSafe) Go() {

rootCatcher := exceptions.Catch(

rootHandler(g.failure(), g.logger, g.apm, g.name()))

go func() {

if g.stop() {

return

}

 g.fn()

 }()

}

Job Runner (High-level)

func (b *JobRunner) run(job Job, ctx context.Context) {

 ...

 running := atomic.LoadInt32(&b.running)

 nWorkers := atomic.LoadInt32(&b.nWorkers)

 canRun = running < nWorkers

 if !canRun {

 b.queue.Push(&jobWithContext{job: job,ctx: ctx,})

 return

 }

 if atomic.CompareAndSwapInt32(&b.running, running, running+1) {

 SafeGo(func() {

 defer b.checkAndDrain()

 job.Execute(ctx)

 }).Go()

...

Stream (High-level)

func NewStream(c context.Context) *Stream {

 ...

 stream := &Stream{

 nonBlockQ: NewQueue(cc),

 ctx: ctx,

 cancel: cancel,

 ccancel: ccancel,

 done: int32(0),

 timeout: DefaultStreamTimeout,

 }

 stream.cond = NewConditionVar(cc, r, stream)

 return stream

 }

Stream (High-level)

func (s *Stream) Produce(element interface{}) (ret bool) {

 select {

 case <-s.ctx.Done():

 return false

 default:

 }

 select {

 case <-s.ctx.Done():

 return false

 default:

s.nonBlockQ.Send(element)

 s.cond.Signal()

 return true

 }

 }

Stream (High-level)

func (s *Stream) Consume() (interface{}, bool) {

 for {

 element, ok := s.nonBlockQ.Recv()

 if !ok {

 select {

 case <-s.ctx.Done(): return nil, false

 default:

 }

 s.wait(func() bool {

 !s.Done()

 })

 continue

 }

 return element, true

 }}

Streaming MapReduce (High-level)

 stream := patterns.NewStream(ctx)

 defer stream.Cancel()

 patterns.InBackground(ctx, func(ctx context.Context) {

 for i, _ := range clusters[:len(clusters)-1] {

 for k, _ := range clusters[i+1:] {

 j := i + 1 + k

 if !stream.Produce([]int{i, j}) {

 break

 }

 }

 }

 stream.End()

 })

Streaming MapReduce (High-level)

 patterns.MapReduce(stream,

 func(ctx context.Context, i interface{}) interface{} {

 hc1 := clusters[i[0]]; hc2 := clusters[i[1]]

 if hc1.SimilarityWithFrequencyScore(hc2) >= setSimilarity {

 return i

 }

 return nil

 },

 func(results interface{}, result interface{}) interface{} {

 graph.AddEdge(result[0], result[1])

 return nil

 }

)

Summary:

1. Streaming systems are difficult to build.
2. Highly concurrent processes are typically needed.
3. Standard CSP/Pi-calculus primitives are too low-level.
4. In our case, declarative primitives yield more stable systems.

Extending the primitives has paid off,
but we are still making mistakes and learning.

This is a massive team effort:
Oliver Bose
Brian Wilke
Kevin Hummel

Thank you.

